Back to Calculators

Heat Sink Calculator

Calculate thermal requirements for power components, regulators, and semiconductors.

Thermal Resistances

Enter values to see results

Thermal Model

Junction
Tj
→ θjc →
Case
Tc
→ θcs →
Sink
Ts
→ θsa →
Ambient
Ta
Tj = Ta + P × (θjc + θcs + θsa)

Thermal Interface Materials (θcs)

Materialθcs (°C/W)Notes
Thermal Paste (standard)0.5 - 1.0Most common, easy to apply
Thermal Paste (high-end)0.2 - 0.5Metal oxide or silver-based
Thermal Pad (silicone)1.0 - 3.0Easy handling, fills gaps
Thermal Pad (graphite)0.3 - 0.5Reusable, compressible
Mica + Paste0.4 - 0.9Electrical isolation
Direct Contact (no TIM)1.5 - 5.0+Not recommended

Understanding Thermal Management

Heat flows from the semiconductor junction through thermal resistances to the ambient environment. Each interface adds resistance, limiting how much power can be dissipated safely.

The Thermal Equation

Tj = Ta + P × (θjc + θcs + θsa)

Junction temp equals ambient plus heat rise through all thermal resistances.

Thermal Budget

θja(max) = (Tj(max) - Ta) / P

This is your total allowable thermal resistance from junction to ambient.

Heat Sink Selection Guide

Natural Convection

No fan required. Relies on rising hot air. Best for low to medium power.

  • • θsa: 3-20 °C/W typical
  • • Up to ~15W practical limit
  • • Orientation matters (fins vertical)

Forced Air Cooling

Fan provides constant airflow. Much better thermal performance.

  • • θsa: 0.5-3 °C/W typical
  • • Can handle 50W+ easily
  • • Fan noise and reliability concerns

Liquid Cooling

Water or coolant carries heat away. Best for high power density.

  • • θsa: 0.05-0.5 °C/W typical
  • • Can handle 100W+ per device
  • • Complex, expensive, reliability

Heat Spreaders

Copper or aluminum plates spread heat over larger area.

  • • Reduces hot spots
  • • Often combined with other methods
  • • PCB copper can act as spreader

Heat Pipes

Sealed tubes with phase-change fluid for efficient heat transport.

  • • Move heat to remote sink
  • • Very low thermal resistance
  • • Gravity/orientation dependent

Thermoelectric (TEC)

Peltier coolers can actively pump heat. Needs heat sink on hot side.

  • • Can cool below ambient
  • • Low efficiency (30-60%)
  • • Adds heat to system overall

Typical θjc Values by Package

Packageθjc (°C/W)θja (no sink)Common Use
TO-2200.5 - 2.050 - 70Power MOSFETs, regulators
TO-2470.3 - 0.735 - 50High power MOSFETs, IGBTs
TO-263 (D2PAK)0.5 - 2.040 - 70SMD power devices
TO-252 (DPAK)1.0 - 3.050 - 100SMD regulators, MOSFETs
SOT-22310 - 20100 - 150Small regulators
SOT-2350 - 100200 - 350Small signal transistors
QFN (exposed pad)1 - 525 - 50ICs with thermal pad
BGA (with lid)0.1 - 0.515 - 30Processors, FPGAs

Note: Actual values vary by manufacturer and specific device. Always check the datasheet.

Thermal Design Best Practices

PCB Thermal Management

  • • Use thermal vias under hot components
  • • Large copper pours act as heat spreaders
  • • Thicker copper (2oz+) improves spreading
  • • Keep hot components away from heat-sensitive parts
  • • Consider internal copper planes for heat spreading

System Considerations

  • • Account for worst-case ambient temperature
  • • Allow for component aging (degraded θjc)
  • • Include safety margin (10-20°C below max Tj)
  • • Test at maximum load conditions
  • • Consider altitude effects on air cooling